
A Review on Deterministic Finite Automata
Compression Techniques for Efficient Pattern

Matching Process
Ms. Utkarsha P. Pisolkar1, Prof. Shivaji R. Lahane2

1Student, Computer Engg. Department, GES’s R. H. Sapat COE, Nashik
Pune University, India

 2Professor, Computer Engg. Department, GES’s R. H. Sapat COE, Nashik
Pune University, India

Abstract- Pattern matching is a very significant method in
many network security applications, such as intrusion
detection, deep packet inspection, IP lookups etc.
Deterministic Finite Automata (DFA) and Non deterministic
finite automata (NFA) are widely used in pattern matching
process to represent the patterns. To match with fast network
speed, need of such security applications is a memory efficient
and speedy pattern matching process. There are many
techniques present which make the pattern matching process
fast and memory efficient. Deterministic finite automata
compression is one of them. Deterministic finite automata
compression can be grouped into state reduction, transition
reduction, character set reduction and bit reduction. Prior
works on all these categories are discussed in this paper. At
the end, the bit reduction technique is discussed. It reduces the
number of bits required to represent each state and works on
Aho-Corasick DFAs.

Keywords-Bit reduction, Deterministic finite automata,
Intrusion detection, Network security, Pattern matching.

I. INTRODUCTION

Today, a computer network has become a very
important part of our daily life. Internet has a fast growth
from the last decade with increasing dependence of society
on it. Internet provides a wide range of advantages to
society but it is infected by many security attacks which
disrupts the functionality of networking and computing
infrastructure. To ensure the protection of network or
system from attacks, many security applications uses
variety of safety measures. For a system, user can use
security software (such as antivirus software). For a
network, security mechanisms are made in such way that
they directly respond to attacks, Network Intrusion
detection System is widely used for this purpose. Basically
Intrusion Detection System (IDS) examines all the packets
and detects the attack. Like viruses, most attacks have some
sort of signatures therefore these signature patterns are
compared to detect any attack activity. Pattern matching has
become the important module of all network security
applications to compare these signature patterns.

As networking speeds doubling every year, the pattern
matching algorithm must be able to operate at high speed to
compare thousand of string patterns. Therefore, today, the
most challenging tasks for security applications are to
improve inspecting speed and also reduce their memory

requirement. So, it requires well designed algorithms and
techniques to speed up pattern matching process.

Pattern matching involves inspection of a given
sequence of tokens for the presence of components of some
pattern. For a given strings T (text) and P (pattern), the
pattern matching problem consist of finding a substring of
T equal to P. More complex patterns are described by
regular expressions. Regular expressions are grammars that
define the regular language. A regular expression forms a
search pattern. This search pattern is used in pattern
matching process. A finite automaton is a machine which
recognizes a regular language. It is further divided into
Deterministic Finite Automata (DFA) and Non-
deterministic Finite Automata (NFA). Both DFA and NFA
are commonly used in pattern matching process. SNORT is
a popular and commonly used open source IDS [2]. It has
thousands of rules in which the rules refer to the header as
well as to the packet payload. SNORT is often used as first
step in many pattern matching algorithms to identify regular
expressions [2].

Rest of the paper is organized as follows. Section one
provides introduction, survey of literature of some of the
existing compression techniques and various algorithms
used till today are discussed in section two. Section three
highlights the DFA compression technique using bit
reduction method in detail, and finally section four presents
a conclusion.

II. LITERATURE SURVEY

There are standard string matching algorithms are
present such as Aho-Corasick [1] and Wu-Manber [10].
Alfred V. Aho and Margaret J. Corasick have proposed
efficient string matching algorithm [1]. In that, a finite state
pattern matching machine has constructed from the
keywords and it is used to process the text string in a single
pass. S. Wu, U. Manber have introduced an algorithm to
search for multiple patterns at the same time [10]. This
multi-pattern matching algorithm could be used instead
indexed or sorted data in some applications involving small
to medium size datasets. A large body of research literature
has concentrated on improving these algorithms to make
use of them in networking area.

To make a pattern matching process fast and memory
efficient, many DFA compression techniques are carried
out. They all are focused on improving algorithm’s

Utkarsha P. Pisolkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7323-7325

www.ijcsit.com 7323

performance and speed, reducing memory storage
requirements. And can be done in different ways such as
reduce number of transitions, reduce number of states,
reduce character sets and reduce bits encoding the
transitions.

A. Transition Reduction
In transition reduction technique, the numbers of

transitions are reduced in each state. Under this category,
techniques were introduced like D2FA [9] and CD2FA [7].

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner have introduced the Delayed Input DFA (D2FA),
which reduced space requirements by reducing the number
of distinct transitions between states [9]. Default transitions
were used to reduce memory storage requirement. Since
many states can have similar sets of outgoing transitions,
redundant transitions were replaced by a single default
transition in D2FA. For two states s1 and s2 which have
transitions to the similar set of states, {S}, for some set of
input characters, {C}. These transitions were removed from
one state s1 and launched a default transition from s1 to s2
which followed for all the characters in {C}. So, s1
maintained distinctive next states for those transitions
which are not similar to s1 and s2 and used the default
transition to s2 for the similar transitions. A D2FA is
constructed by transforming a DFA via incrementally
replacing number of transitions of the automata with a
single default transition. D2FA had provided a trade-off
between the memory requirements of the compressed DFA
and the number of states visited for each character
processed. But the negative aspect of this approach is the
traversal of several states when processing a single input
character, which needs memory bandwidth increase to
evaluate regular expressions.

S. Kumar, J. Turner, and J. Williams have illustrated a
transition reduction technique to boost the speed of D2FA as
by storing more information on the transitions edges [7].
Content Addressed Delayed Input DFA (CD2FA) has
introduced and built upon the delayed input DFA (D2FA),
whose state numbers are replaced by content label. These
content labels densely contain information that would be
stored in the table entry for the state and by using this
information consecutive states of a D2FA are addressed by
CD2FA, instead of “content-less” identifier. Also the
content label is used to omit past default transitions.
Therefore, selected information is available earlier in the
state traversal process, which is enough for the CD2FA to
avoid any default traversal, thus avoiding unnecessary
memory accesses and hence achieved higher throughput for
pattern matching.

B. State Reduction
In state reduction technique, the numbers of DFA states

are reduced. Hybrid DFA-NFA, HFA, XFA are based on
state reduction technique.

M. Becchi and P. Crowley [4] have introduced hybrid
DFA-NFA state reduction solution based on the study that
DFAs are infeasible with large sets of regular expression
and NFAs lighten the memory storage problem but lead to a
potentially large memory bandwidth requirement. The
reason is that multiple NFA states can be active in parallel

and each input character can activate multiple transitions. A
hybrid DFA-NFA solution is proposed which brought
together the strengths of both automata: when constructing
the automaton, any nodes that would contribute to state
explosion keep an NFA encoding, while the others are
transformed into DFA nodes.

S. Kumar, B. Chandrasekaran, J. Turner, and G.
Varghese [6] have studied three main limitations of the
traditional DFAs based NIDS. First, DFAs do not take
advantage of the fact that normal data streams rarely match
more than few initial symbols of any signature. Second, the
DFAs are extremely inefficient in following multiple
partially matching signatures and explode in size. Third,
DFAs are incapable of keeping track of the occurrences of
certain sub-expressions. And a History-based Finite
Automaton (H-FA) is proposed to solve each of these
drawbacks by adding some information to keep the
transition history and, as a result, reduced the number of
states. It is also a state reduction technique. More
information is remembered by proposed machine, such as
encountering a closure, by storing them in a small and fast
cache which signifies a sort of history buffer. So, it has
number of conditional transitions per character, which
resulted in a large transition table and a slow inspection
speed.

Another state reduction technique is extended character
set (XFA) [5]. A XFA uses number of automata
transformations to eliminate conditional transitions. XFA is
limited to one auxiliary state per regular expression, which
is inappropriate for difficult regular expressions.

D.Ficara, S.Giordano, G. Procissi, F.Vitucci, G.Antichi,
A.DiPietro have proposed a compressed representation for
deterministic finite automata, called Delta Finite Automata
[3]. The algorithm reduced the number of states and
transitions and it is based on the study that most adjacent
states share several common transitions, so it stored only
the differences between them. Primary feature of the delta
finite automata is that it required only a state transition per
character, thus allowed a fast string matching. A new state
encoding scheme called Char-State compression based on
input characters is proposed which exploited the association
of many states with a few input characters. This
compression scheme has integrated into the delta finite
automata algorithm, which resulted in a further memory
reduction.

C. Character Set Reduction
In character set reduction technique, character set is

getting reduced. S. Kong, R. Smith, and C. Estan have
mapped the set of characters in an alphabet to a smaller set
of clustered characters that label the same transitions for a
substantial amount of states in the automaton [8]. Several
alphabet compression tables have used as a lightweight
method for reducing the memory requirements of DFAs.
This technique has used heuristics approach to partition the
states of a DFA and computing a distinct alphabet
compression table for each partition [8]. An Alphabet
Compression Table can be used to map groups of symbols
to a single symbol that is retrieved by a table lookup [8].

Utkarsha P. Pisolkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7323-7325

www.ijcsit.com 7324

III. DFA COMPRESSION USING BIT REDUCTION TECHNIQUE

CompactDFA technique is used to compress the number
of bits required to represent each state[2]. It uses DFA
compression algorithms that work on a large class of Aho-
Corasick-like DFAs. This algorithm reduces the rule set to
only one rule per state [2]. Thus, all transitions to a specific
state are encoded by a single prefix [2]. An algorithm
encodes and stores the DFA in memory. While examining
the input, this DFA is access by an algorithm. Encoding
scheme stores the set of rules with current state field,
symbol field and next state field [2]. A DFA compression
algorithm includes three stages: state grouping, common
suffix tree construction, state and rule encoding [2].

A. State Grouping
In the first stage, making a group of the states is based

on common suffix (CS) and longest common suffix (LCS)
parameters. These two parameters are calculated for each
state in DFA [2]. If a state has more than one incoming
transitions then common suffix, denoted as CS(s), is a label
of the state without its last symbol. Otherwise, no common
suffix is present for a state. Label of a state s, denoted as
label(s), is concatenation of the edge symbols of shortest
path from initial state to state s [2]. The longest common
suffix for state s, denoted as LCS(s), is long length common
suffix of a state to which state s has an outgoing edge.

B. Common Suffix Tree Construction
In the second stage, common suffix tree is created and

suffix rules are map to prefix rules. The nodes in common
suffix tree are different LCS values called as set L. For
every two values l1, l2 in set L, l1 is an ancestor of l2 if and
only if l1 is a suffix of l2 [2]. Connecting nodes are added
for every internal node such that the total number of its
children is a power of two [2].At the end, states are linked
to one of the connecting nodes.

C. State and Rule Encoding
In the third stage, there is a procedure of encoding of

common suffix tree, states and rules. First code width is
calculated which is a number of bits required to encode the
common suffix tree. Then edges and nodes are encoded. At
the end, using corresponding node in common suffix tree
every state is encoded.

Common suffix tree is truncated at predefined depth to
minimize total memory requirement. It is a simple variation
over common suffix tree such that nodes that appear in the
common suffix tree more than predefined depth are
connected to their ancestor at predefined depth if they are
state nodes [2]. Otherwise nodes are omitted. Speed of the
CompactDFA is increase by performing lookup on input
sequence of characters of predefine size [2]. A set of
compressed rules is the output of CompactDFA technique
[2]. When a state matches more than one rule then a rule
with longest prefix determines the action [2].

IV. CONCLUSION

The security of network and computer system is very
important. Pattern matching is a basic method used in
security applications. It is widely used in Intrusion
detection system. It compares signature patterns to detect

attacks. It is very important to increase speed and to reduce
the memory space requirement of pattern matching method.
DFA can be compressed by techniques like transition
reduction, state reduction, character set reduction and bit
reduction. Transition reduction technique reduces number
of transitions of every state. State reduction technique
decreases number of states. In character set reduction,
alphabet set of patterns are minimize to smaller size. Bit
reduction technique decreases number of bits required to
represent every state. These techniques can be applied as
alone or in mixture of two or more. At the end, Bit
reduction technique which works on Aho-Corasick DFA is
discussed in this paper. It has three stages: state grouping,
common suffix tree construction, state and rule encoding.
The compressed rule set of this technique helps in
decreasing number of bits required for a state.

ACKNOWLEDGMENT

 We are glad to express our sentiments of gratitude to all
who rendered their valuable guidance to us. We would like
to express our appreciation and thanks to Prof. Dr. P. C.
Kulkarni, Principal, G. E. S. R. H. Sapat College of Engg.,
Nashik. We are also thankful to Prof. N. V. Alone, Head of
Department, Computer Engg., G. E. S. R. H. Sapat College
of Engg., Nashik. We thank the anonymous reviewers for
their comments.

REFERENCES
[1] A.V. Aho and M.J. Corasick. “Efficient String Matching: An Aid to

Bibliographic Search.” Communications of the ACM, 18(6):333–
340, 1975.

[2] AnatBremler-Barr, D.Hay, and Y. Koral, “CompactDFA:Scalable
pattern matching Using Longest Prefix Match Solutions," in
IEEE/ACM Transaction on networking,vol-22,No.2,April 2014.

[3] D.Ficara, S.Giordano, G. Procissi, F.Vitucci, G.Antichi, A.D. Pietro,
“An Improved DFA for Fast Regular Expression Matching” ACM
SIGCOMM Computer Communication Review, Volume 38, Number
5, October 2008.

[4] M. Becchi, P. Crowley, “A hybrid finite automaton for practical
deep packet inspection”, Proc. Of CoNEXT'07, pages 1-12. ACM,
2007.

[5] R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with
extended automata”, in IEEE Symposium on Security and Privacy,
May 2008.

[6] S. Kumar, B. Chandrasekaran, J. Turner, G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia,
and acalculia”, in Proc. of ANCS '07, pages 155-164. ACM, 2007.

[7] S. Kumar, J. Turner, J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection”, in Proc. of ANCS '06, pages 81-92.
ACM, 2006.

[8] S. Kong, R. Smith, and C. Estan, “Efficient signature matching with
multiple alphabet compression tables,” in Proc. Int. Conf. Security
Privacy Commun. Netw. (Securecomm), 2008.

[9] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching for
deep packet inspection”, in Proc. of SIGCOMM '06, pages 339-350.
ACM, 2006.

[10] S. Wu , U. Manber, “A fast algorithm for multi-pattern searching”
Technical Report TR-94-17, Dept.of Computer Science, University
of Arizona,1994.

Utkarsha P. Pisolkar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7323-7325

www.ijcsit.com 7325

